Search results for "Amphiphilic polymer"
showing 3 items of 3 documents
PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions
2015
Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α toc…
Cellular Uptake of DNA Block Copolymer Micelles with Different Shapes
2008
The cellular uptake of DNA block copolymer micelles composed of DNA-b-PPO in Caco-2 cells was studied. In particular it was investigated if the shape of micelle aggregates influences the internalization. Rod-like polymeric particles were taken up 12 times more efficiently than their spherical counter parts although they were composed of the same constituents. Furthermore, it was observed that internalization of all the micelle systems was more efficient than the pristine DNA controls. A cytotoxicity assay proved the non-toxic nature of DNA-b-PPO micelle aggregates.
Development and In Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone.
2017
Made available in DSpace on 2018-12-11T17:33:26Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-08-02 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) In this study, amphiphilic polymers were investigated as biomaterials that can control dexamethasone (DXM) release. Such materials present interfacial properties in the presence of water and an oily phase that can result in lyotropic liquid crystalline systems (LLCS). In addition, they can form colloidal nanostructures similar to those in living organisms, such as bilayers and hexagonal and cubic phases, which can be exploited to solubilize lipophilic drugs to sustain their release and enhance bioavailability. It was…